Energy coupling mechanisms of MFS transporters
نویسندگان
چکیده
منابع مشابه
Energy coupling mechanisms of AcrB-like RND transporters
Prokaryotic AcrB-like proteins belong to a family of transporters of the RND superfamily, and as main contributing factor to multidrug resistance pose a tremendous threat to future human health. A unique feature of AcrB transporters is the presence of two separate domains responsible for carrying substrate and generating energy. Significant progress has been made in elucidating the three-dimens...
متن کاملEvolutionary mix-and-match with MFS transporters.
Major facilitator superfamily (MFS) transport proteins are ubiquitous in the membranes of all living cells, and ∼25% of prokaryotic membrane transport proteins belong to this superfamily. The MFS represents the largest and most diverse group of transporters and includes members that are clinically important. A wide range of substrates is transported in many instances actively by transduction of...
متن کاملStructure and mechanism of energy-coupling factor transporters.
Energy-coupling factor (ECF) transporters form a new family of ATP-binding cassette (ABC) transporters and are widely used by prokaryotes to take up micronutrients from the environment. Instead of using the periplasmic solute-binding proteins (SBPs), ECF transporters use the membrane S proteins for substrate capture and translocation. In this review, we will focus on structural advances that ha...
متن کاملEvolutionary mix-and-match with MFS transporters II.
One fundamentally important problem for understanding the mechanism of coupling between substrate and H(+) translocation with secondary active transport proteins is the identification and physical localization of residues involved in substrate and H(+) binding. This information is exceptionally difficult to obtain with the Major Facilitator Superfamily (MFS) because of the broad sequence divers...
متن کاملThe alternating-access mechanism of MFS transporters arises from inverted-topology repeats.
Lactose permease (LacY) is the prototype of the major facilitator superfamily (MFS) of secondary transporters. Available structures of LacY reveal a state in which the substrate is exposed to the cytoplasm but is occluded from the periplasm. However, the alternating-access transport mechanism requires the existence of a periplasm-facing state. We recently showed that inverted-topology structura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Protein Science
سال: 2015
ISSN: 0961-8368
DOI: 10.1002/pro.2759